The same technology that has been used to strengthen polymers1, de-ice helicopter wings2, and create more efficient batteries3 may one day help those with damaged or even severed spinal cords walk again. The Tour Lab at Rice University, headed by Dr. James Tour, is harnessing the power of graphene nanoribbons to create a special new material called Texas-PEG that may revolutionize the way we treat spinal cord injuries; one day, it may even make whole body transplants a reality.

Dr. Tour, the T.T. and W.F. Chao Professor of Chemistry, Professor of Materials Science and NanoEngineering, and Professor of Computer Science at Rice University, is a synthetic organic chemist who mainly focuses on nanotechnology. He currently holds over 120 patents and has published over 600 papers, and was inducted into the National Academy of Inventors in 2015.4 His lab is currently working on several different projects, such as investigating various applications of graphene, creating and testing nanomachines, and the synthesizing and imaging of nanocars. The Tour Lab first discovered graphene nanoribbons while working with graphene back in 2009.5 Their team found a way to “unzip” graphene nanotubes into smaller strips called graphene nanoribbons by injecting sodium and potassium atoms between nanotube layers in a nanotube stack until the tube split open. “We fell upon the graphene nanoribbons,” says Dr. Tour. “I had seen it a few years ago in my lab but I didn’t believe it could be done because there wasn’t enough evidence. When I realized what we had, I knew it was enormous.”

This discovery was monumental: graphene nanoribbons have been used in a variety of different applications because of their novel characteristics. Less than 50 nm wide ( which is about the width of a virus), graphene nanoribbons are 200 times stronger than steel and are great conductors of heat and electricity. They can be used to make materials significantly stronger or electrically conductive without adding much additional weight. It wasn’t until many years after their initial discovery, however, that the lab discovered that graphene nanoribbons could be used to heal severed spinal cords.

The idea began after one of Dr. Tour’s students read about European research on head and whole body transplants on Reddit. This research was focused on taking a brain dead patient with a healthy body and pairing them with someone who has brain activity but has lost bodily function. The biggest challenge, however, was melding the spine together. The neurons in the two separated parts of the spinal cord could not communicate with one another, and as a result, the animals involved with whole body and head transplant experiments only regained about 10% of their original motor function. The post-graduate student contacted the European researchers, who then proposed using the Tour lab’s graphene nanoribbons in their research, as Dr. Tour’s team had already proven that neurons grew very well along graphene.

“When a spinal cord is severed, the neurons grow from the bottom up and the top down, but they pass like ships in the night; they never connect. But if they connect, they will be fused together and start working again. So the idea was to put very thin nanoribbons in the gap between the two parts of the spinal cord to get them to align,” explains Dr. Tour. Nanoribbons are extremely conductive, so when their edges are activated with polyethylene glycol, or PEG, they form an active network that allows the spinal cord to reconnect. This material is called Texas-PEG, and although it is only about 1% graphene nanoribbons, this is still enough to create an electric network through which the neurons in the spinal cord can connect and communicate with one another.

The Tour lab tested this material on rats by severing their spinal cords and then using Texas-PEG to see how much of their mobility was recovered. The rats scored about 19/21 on a mobility scale after only 3 weeks, a remarkable advancement from the 10% recovery in previous European trials. “It was just phenomenal. There were rats running away after 3 weeks with a totally severed spinal cord! We knew immediately that something was happening because one day they would touch their foot and their brain was detecting it,” says Dr. Tour. The first human trials will begin in 2017 overseas. Due to FDA regulations, it may be awhile before we see trials in the United States, but the FDA will accept data from successful trials in other countries. Graphene nanoribbons may one day become a viable treatment option for spinal injuries.

This isn’t the end of Dr. Tour’s research with graphene nanoribbons. “We’ve combined our research with neurons and graphene nanoribbons with antioxidants: we inject antioxidants into the bloodstream to minimize swelling. All of this is being tested in Korea on animals. We will decide on an optimal formulation this year, and it will be tried on a human this year,” Dr. Tour explained. Most of all, Dr. Tour and his lab would like to see their research with graphene nanoribbons used in the United States to help quadriplegics who suffer from limited mobility due to spinal cord damage. What began as a lucky discovery now has the potential to change the lives of thousands.


  1. Wijeratne, Sithara S., et al. Sci. Rep. 2016, 6.
  2. Raji, Abdul-Rahman O., et al. ACS Appl. Mater. Interfaces. 2016, 8 (5), 3551-3556.
  3. Salvatierra, Rodrigo V., et al. Adv. Energy Mater. 2016, 6 (24).
  4. National Academy of Inventors. (accessed Feb. 1, 2017).
  5. Zehtab Yazdi, Alireza, et al. ACS Nano. 2015, 9 (6), 5833-5845.